注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

很想大家呐

 只要朝着阳光,便不会看见阴影。

 
 
 

日志

 
 

15年的数学难题 —— 分Pizza(原载科学松鼠会)  

2010-03-20 13:50:14|  分类: 幻※科学控 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

我是一个“西瓜控”,不管夏天还是冬天,都喜欢吃。要是一人独享西瓜的话,我都是一刀两半,然后拿勺子大口大口地吃,痛快。可是如果和家人朋友一起分享的话,那只好把西瓜切成一块一块的,大家一人一块的这么吃。可是面对西瓜,我总会邪恶地挑大块的吃,以免“吃亏”。如果两个人分瓜,一人一块轮流吃下去,谁会吃得多呢?又怎么才会吃得多呢?

你或许不知,这也是一个有趣的数学难题呢,虽然不像哥德巴赫猜想这么有名,但它也整整经历了15年才终于在去年被成功解决。

问题最早在1967年《数学杂志》上被提出,好事之人叫厄普顿(Upton),但他关注的不是分西瓜,老外嘛,爱分Pizza。因此问题如下:如果有一个Pizza,经若干刀分成若干份之后,两个人按照顺时针(或逆时针)的顺序一人一块来吃的话,谁能吃得多呢?这个问题看似很白痴,有人会说,每个人都取来自己分得的Pizza,然后称一下不就知道了吗?但这个问题在数学家眼中,却是另一个世界。

15年的数学难题 —— 分Pizza(原载科学松鼠会) - 水银灯※梦幻音符 - 天使vs恶魔

问题的开端:切2刀和切偶数刀

数学家磨刀霍霍,开始考虑各种情况。第一,如果每一刀都经过Pizza的圆心的话,那当然不管切几刀,两个人都会分到一样多。实际上人们分Pizza不可能精确地都切过圆心的,所以问题来了:如果每一刀交错点不在圆心上,那两个人谁能分的多呢?

显而易见,切两刀的话,那Pizza会分成四份(见下图)。如果两刀的交错点不在圆心,那么一定会有一块大一些,也就是包括Pizza圆心的那一块。结果不难推出:吃到Pizza圆心的那个人会分得更多Pizza,也就是图中白色的两块Pizza。

15年的数学难题 —— 分Pizza(原载科学松鼠会) - 水银灯※梦幻音符 - 天使vs恶魔 15年的数学难题 —— 分Pizza(原载科学松鼠会) - 水银灯※梦幻音符 - 天使vs恶魔

如果切4刀,6刀,8刀或更多的偶数刀的话,结果就有所不同了——两个人会分得一样的Pizza。(见上图)这个问题并不是很难证明,不用很难的代数知识就可以解决。厄普顿也就是做了这个工作,分析了所有偶数刀的分发结果。可如果是切3,5,7,9刀呢?这才是真正难题的开始。厄普顿并没有研究这个,它也就一直沉寂到了1994年。

真正的难题:切奇数刀的话

数学家迪尔曼在1994年的时候同样是在《数学杂志》上再次提到了这个Pizza难题,并且邀请广大数学家们来解决:如果切奇数刀会怎么样?他自己计算了,如果切3刀的话,吃到Pizza中心的人会分得的更多。然后另一个数学家马布里加入了这个研究,他计算了切5刀的情况。结果正好相反,吃到Pizza中心的那个人会分得更少。如果继续计算下去,再增加两刀达到7刀的时候,结果又反过来了……每到下一个奇数,结果好像就颠倒一次。(见下图)

15年的数学难题 —— 分Pizza(原载科学松鼠会) - 水银灯※梦幻音符 - 天使vs恶魔

如何分析所有奇数的情况呢,这似乎才是问题的关键所在。迪尔曼和马布里两人由此展开了他们漫长的数学解密征途。这个问题看似简单,但是要做到严格的数学证明,并不容易,就像历史上那些著名的数学难题一样,需要精密而且精巧的方法,才能解决。

经过了漫长的15年,他们才终于征服了这个Pizza难题。15年,就研究了怎么分一个Pizza,听上去有点滑稽,但对于数学理论来说,这是一个不可忽视的贡献。具体的解决方法,我想我和大家都不能完全看懂,在此就不赘述,大致上他们把问题转化了一下:把“每多切一刀,两个人相比谁多谁少”由一个正负值的来表示。为了分析这个正负值是如何变化,他们需要一个代数模型来计算。经过多年来在无数的代数学已有的模型中辛勤搜索,他们终于从一篇1979年的论文中找到了所需的模型,然后问题迎刃而解。结论也就是——切3,7,11,15刀(4N-1刀)时,吃得到Pizza中心的人会分得更多;切5,9,13,17刀(4N+1刀)时,吃到中心的人分得少。

问题是解决了,结论是证明了,不过有人问,这个给我们的工业生产带来什么好处了吗?没有,暂时还没有。数学的美,不在于那些,而在于其精巧的思路和严谨的逻辑,这才是一个有一个数学难题真正的魅力。不过这至少让我知道了,如果我和另一个人分西瓜的时候,如果切了偶数刀的话,那就一人分一半;如果切了奇数刀的话,那我有50%概率多吃到西瓜。也就是说不用想太多了,总体来说,西瓜总是平分了的。但是对于看了本文的朋友们,你们现在应该有足够的自信大胆切奇数刀,然后保证自己能吃到更大分的Pizza(或者西瓜)吧。

  评论这张
 
阅读(36)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017